Accelerating High-Resolution Seismic Imaging by Using Deep Learning
نویسندگان
چکیده
منابع مشابه
High-resolution lithospheric imaging with seismic interferometry
In recent years, there has been an increase in the deployment of relatively dense arrays of seismic stations. The availability of spatially densely sampled global and regional seismic data has stimulated the adoption of industry-style imaging algorithms applied to convertedand scattered-wave energy from distant earthquakes, leading to relatively high-resolution images of the lower crust and upp...
متن کاملCorefrence resolution with deep learning in the Persian Labnguage
Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...
متن کاملAccelerating Deep Learning with Memcomputing
Restricted Boltzmann machines (RBMs) and their extensions, often called “deep-belief networks”, are very powerful neural networks that have found widespread applicability in the fields of machine learning and big data. The standard way to training these models resorts to an iterative unsupervised procedure based on Gibbs sampling, called “contrastive divergence”, and additional supervised tunin...
متن کاملDigital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning
The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...
متن کاملAccelerating SGD for Distributed Deep-Learning Using Approximated Hessian Matrix
We introduce a novel method to compute a rank m approximation of the inverse of the Hessian matrix in the distributed regime. By leveraging the differences in gradients and parameters of multiple Workers, we are able to efficiently implement a distributed approximation of the Newton-Raphson method. We also present preliminary results which underline advantages and challenges of secondorder meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2020
ISSN: 2076-3417
DOI: 10.3390/app10072502